IPv4 vs IPv6 Archives - ClouDNS Blog https://www.cloudns.net/blog/tag/ipv4-vs-ipv6/ Articles about DNS Hosting and Cloud Technologies Thu, 25 Jul 2024 09:35:46 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.6 IPv4 vs IPv6 and where did IPv5 go? https://www.cloudns.net/blog/ipv4-vs-ipv6-internet-protocol/ https://www.cloudns.net/blog/ipv4-vs-ipv6-internet-protocol/#respond Wed, 03 Apr 2024 08:00:00 +0000 https://www.cloudns.net/blog/?p=951 Every time you see some network settings, there are IPv4 or IPv6 addresses. As you can guess, the previous versions are long in the past (TCP/IP v1, v2, and v3). But why is it IPv4 vs IPv6 instead of the 5th version vs the 6th? How is it that the IPv4 from the 80s is …

The post IPv4 vs IPv6 and where did IPv5 go? appeared first on ClouDNS Blog.

]]>
Every time you see some network settings, there are IPv4 or IPv6 addresses. As you can guess, the previous versions are long in the past (TCP/IP v1, v2, and v3). But why is it IPv4 vs IPv6 instead of the 5th version vs the 6th? How is it that the IPv4 from the 80s is still around? What are the differences between IPv4 and IPv6? Let’s find out!

What is IP (Internet Protocol)?

IP is an abbreviation of the internet protocol. The IP is the way devices connect to the internet. It has a set of rules that define how the data travels from host to its destination. Basically, we need to define what we see (hostname), where it is (IP address), and how to get there (route).

To identify all the devices (hosts), there are IP addresses that are unique to them. They are assigned by the network administrators and could be static (fixed) IPs or dynamic (changing automatically after time) IPs.

An IP address is a simple string of numbers that are separated by periods. An example of an IP is 127.0.0.1, which is the localhost of most network systems.

First, the IP protocol was part of the TCP/IP. The first version that separated from it was the IPv4.

Types of IP addresses

When are talking about cosumers’ IP addresses, we can define four:

  • Private IP addresses

The Private IP address is used inside the network. Imagine your home or office. You have a router that probably uses a dynamic method of IP allocation like DHCP. Your device will request an address, and it will receive one. This is a private IP address for the network that your router creates. Other devices (computers, IoT devices, phones) connected to the Internet thought this router would get their IPs the same way.

The router uses the addresses to identify the connected devices and manages those IPs to provide to other devices later.

Router vs firewall, can you guess which is better?

  • Public IP addresses

Now we are going broader. Your router will get another IP address from your Internet service provider (ISP). This is a public IP address from the IPS’s pool of IP addresses for outside of your network recognition.

This public IP address can be a dynamic IP address leased to you by a DHCP or another type of server for a limited amount of time, or it could be a static IP address that will be fixed for you. The static could allow you to offer services that require such an IP address, but usually, it requires an extra payment.

DNS vs DHCP. Are they connected?

  • Static IP addresses

For a certain set of devices, having a consistent IP address is of utmost importance. This is the case with static IP addresses, which are set and remain fixed over time. It is used mainly on networks where a device needs to be identified in order to access resources or services. Examples of static IP address are 192.168.1.100, 10.0.0.15 and 172.16.1.255. With a static IP address, a computer is always assigned the same address, which makes it easier to access remote resources.

  • Dynamic IP addresses

For many networks, having a single dedicated address isn’t feasible as the amount of devices connected can fluctuate. It’s here where dynamic IP addressing comes into play. It is one that changes every time an individual device connects to a network. It is used on networks where a station needs a unique address for a limited time, after which a different device may use that same address. Dynamic IP addresses are not permanent, so the device connected to the network keeps changing IP addresses as needed. 

4 types of IP address

What is IPv4 address?

IPv4 address is the Internet Protocol version 4 address that serves to identify a device on a network and looks like this 157.240.20.35. It has 4 numbers that can be from 0 to 254, and are divided by dots.

The IPv4 started being used in 1982 on SATNET and one year later on ARPANET.

The IPv4 protocol allows interconnected networks and transmission of data from one place (source) to the destination. It passes datagrams from one internet module to the next until the destination is reached. If the data is too large to pass through a network, it can get fragmentation, chopped into pieces, and pass the limit of the network.

 Problems with IPv4

  • A scarce number of available IPv4. The total number of available IPs is 4 294 967 296 (232). It looks massive, but think about how many connected devices are there. Yes, they are already more, and the internet service providers need to reuse their available IPs. Some are running out of numbers already, and they are starting to provide IPv6 addresses.
  • Does not support IPsec natively. Yes, it could be configured, but it is harder.
  • Limited IPv4 header (60 bytes). You can’t add any additional parameters.
  • The price of IPv4 is rising. Each year the price is rising. Currently is above 25 USD. Maybe finally, the price will be the number one driver to move to the superior IPv6.

When we are talking about DNS and IPv4 addresses, we need to resolve the hostname to its IP address, and we use A records for that purpose.

If you want to check your domain’s A record, we recommend you take a look at the first command from our article: 10 Most used Dig commands

What is IPv6 address?

IPv6 is the latest version of IP. It has been around since 1995 and was introduced to replace the IPv4 back in 1998. Since 2017, the IETF (Internet Engineering Task Force) has ratified it as an Internet Standard.

In contrast to the IPv4, which uses 32-bit addresses, the newer version IPv6 uses 128bit addressing. To see the difference, we will start with one example of IPv6: “2001:0db8:0000:0042:0000:8a2e:0370:7334”. It has 8 groups, double the number of the previous. Each group has 4 hexadecimal (hex) digits, and the groups are separated by colons.

As you can see, there are many more combinations of available IP addresses. To be precise, 1028 times more available addresses!

Another benefit of the new protocol is the increased security. It has IPsec (Internet security protocol). It authenticates the sender (with Authentication Header) and encrypts the data (Encapsulating Security Payload).

Stateless address auto-configuration (SLAAC) is important too. The IPv6 auto-configures by listening to the Ruter Advertisement (RA), from the host. After that, it auto-assigns a 64-bit prefix. The other 64 bits of the address come from the host who self-determines its address.

The main problem of the protocol is the slow adoption from the ISPs (internet providers). They mostly prefer to use IPv4 because they don’t want to invest in new technology. Currently, the adoption rate is 41.35% (date 14.05.2023, oogle IPv6 adoption statistic ), and the leaders are France with 74.68%, second is India with 68.76%, Germany with 67.5%, Belgium with 67.25%, Greece with 61.29%, and the Saudi Arabia with 60.47%.

You can use IPv6 addresses on your managed DNS with AAAA records.

If you need more information you can look at our detailed article about IPv6.

Where is the IPv5 address?

Ok, there are almost no IPv4s left. Why aren’t we moving to IPv5? Why did we skip it? The reason is that IPv5 doesn’t exist. It never made it to become one of the IP protocols. It was planned as a streaming protocol, and it got to its second version, ST2. Its packets had the IP version 5 ID but eventually died as a draft. To evade confusion, the next protocol was named IPv6.

The big problem IPv5 had was that it used the same IPv4 addressing and had the same limited number of addresses.

Part of its development went to the next version, and that is how IPv5 history finished. But let’s see in more detail why IPv5 never came.

Why did IPv5 never emerge?

The journey of IPv5 towards becoming a mainstream internet protocol was halted by several key factors. Its development, closely tied to IPv4’s architectural framework, did not address the looming issue of IP address exhaustion that threatened the internet’s scalability. This critical shortfall, coupled with the emerging needs of a rapidly expanding digital world, necessitated a more comprehensive solution. Enter IPv6, with its vast address space and improved functionalities such as enhanced security and efficient routing. 

As the global internet community gravitated towards adopting IPv6 for its future-ready capabilities, IPv5 remained a crucial yet bypassed step in the evolution of internet protocols, serving as a testament to the ongoing pursuit of technological advancement.

IPv4 vs IPv6

So we are finally getting to the true IPv4 vs IPv6 comparison. Here we are going to put the attention on the fundamental differences that the two protocols have. You will see how much did the new one improve over the IPv4.

Description IPv4 IPv6
Address 32 bit long 128 bit long
Address types Unicast, multicast, and broadcast Unicast, multicast and anycast
Number of IPs 4 294 967 296 2128
Packet size (Maximum transmission unit) 576 bytes required, with fragmentation option 1280 bytes required, no fragmentation
Address configuration Manual or DHCP SLAAC using ICMPv6 or DHCPv6
DNS A records AAAA records
IPsec Optional Mandatory
Transport layers TCP, UDP, RAW TCP, UDP, RAW

IPv4 vs. IPv6: Speed comparison

Is the new IPv6 faster than the previous IPv4?

  • IPv6 has one big advantage: it does not need Network Address Translation (NAT). It uses global addresses because simply there are enough addresses, and it does not need the NAT, while IPv4 will have to deal with NAT.
  • The older protocol has header checksums for bit errors because back when it was introduced, the connectivity was far worse. The newer does not, and its header is fixed to 40 bytes.

Currently, IPv6 is mostly faster than IPv4, with small exceptions.

IPv4 vs. IPv6: Security comparison

  • As we mentioned before, IPv6 already includes IPSec. IPSec can be used with IPv4. Just it takes extra steps.
  • Address scanning is a lot harder for IPv6. We are talking about a massive number of IPv6 subnet addresses. It will take an incredibly long time for an attacker if it does not use some extra criteria for its scanning.
  • IPv6 can support end-to-end encryption. This can reduce man-in-the-middle attacks.
  • Another feature of the new protocol is called SEND (Secure Neighbor Discovery). It is a cryptographic check of a host to see if it is truly the one that it says it is.

Benefits of the IPv6 summarized

  • Better routing without fragmentation of packets
  • Extended address space (128it vs 32bit)
  • IPsec
  • SLAAC – Stateless address auto-configuration
  • An improved structure of the header with less processing overhead

What Internet Protocol version does ClouDNS use?

If you host your domain at ClouDNS, you might be wondering whether ClouDNS uses IPv4 or IPv6. ClouDNS currently uses both IPv4 and IPv6 addresses.

IPv4 enables compatibility with more older devices while IPv6 provides a larger address space, faster response time, and better support for quality of service. ClouDNS ensures the optimum operation of your website, application or any other service across multiple generations of devices and networks. This allows users to easily access your content no matter their device or network, securely and quickly.

Conclusion

IPv4 vs IPv6, now you know the difference. IPv6 provides enough IPs for a long, long time. We probably won’t see any new version any time soon.

As we stand today, more than 25 years from the beginning of IPv6, it is already used by 30% of the world’s Internet users. It will be the preferred IP version in the future, and it is important to start adopting it today.

The post IPv4 vs IPv6 and where did IPv5 go? appeared first on ClouDNS Blog.

]]>
https://www.cloudns.net/blog/ipv4-vs-ipv6-internet-protocol/feed/ 0
What is IPv4? Everything you need to know  https://www.cloudns.net/blog/what-is-ipv4-everything-you-need-to-know/ https://www.cloudns.net/blog/what-is-ipv4-everything-you-need-to-know/#respond Tue, 13 Feb 2024 06:24:00 +0000 https://www.cloudns.net/blog/?p=2007 Nowadays, in this rapidly evolving global Internet world, we can’t skip the IPv4. It is the most used IP currently and still resists giving its spot to the newer and improved IPv6. What makes IPv4 so special? Let’s find out.  IPv4 meaning IPv4 is short for Internet Protocol version 4. The 4th version of the …

The post What is IPv4? Everything you need to know  appeared first on ClouDNS Blog.

]]>
Nowadays, in this rapidly evolving global Internet world, we can’t skip the IPv4. It is the most used IP currently and still resists giving its spot to the newer and improved IPv6. What makes IPv4 so special? Let’s find out. 

IPv4 meaning

IPv4 is short for Internet Protocol version 4. The 4th version of the Internet protocol (IP) is still a popular protocol for communication over the Internet. It establishes the rules and limitations for communication over the Internet or on a local network. Thanks to the IP, we can have interconnected network routing with packet forwarding because it defines the format, and the communications, use IPv4 addresses, and routes data.

In contrast to the transmission Control Protocol (TCP), the Ipv4 protocol does not need to guarantee delivery, and that makes it a connectionless protocol. It functions on the best-effort delivery model and makes it fast.

IPv4 was first described in 1981 by the Internet Engineering Task Force (IETF, RFC 791) and was later adopted by the Department of Defense of The USA in 1982, SATNET in 1982, and ARPANET in 1983. 

We can’t miss talking about IPv4 addresses too. An IPv4 address is a 32-bit address that identifies a device on a network. It is made of 4 groups of numbers (octets) with up to 3 numbers each. The IPv4 will identify the network and the individual host on the network. 

Here you have an example of an IPv4 address: 185.107.80.231

IPv4 Address Format

You can find the website’s IP address by performing a simple command on your computer. Go to the Command Prompt on Windows or Terminal on macOS and Linux, type this command, and press the Enter:

nslookup domainname.com

Change domainname.com with the domain you want. The result will be IPv4 address (from the A DNS record) and IPv6 address (from the AAAA DNS record). 

The problems that IPv4 has are the following:

  • IP address exhaustion. The business needs for IP addresses can’t be satisfied with IPv4 addresses only, so they are already migrating to IPv6. 
  • No IPsec support by default. You can still enable it, but it is a lot easier with the newer IP. 
  • Limited header in which you can’t add extra parameters. 
  • It is getting too expensive with prices above $25 per IP address.

How does the Internet work?

Contrary to popular belief, the Internet is not many clouds communicating wirelessly, but rather a cable network connection between many data centers spread worldwide and clients who want to use services. There are giant cables between the oceans that connect important network points. 

In this large network of interconnected devices and smaller networks, we need order and clearly defined identifications of the connected devices and their addresses. 

The clients need IP addresses as identification so do the servers. The servers will also need hostnames. For web servers, you have seen they have a domain name (hostname) like Google.com, and when you want to get to it, you will see the content of that page.

The content of each website is hosted on web servers in data centers. Websites and applications need servers to host services so you can access them.

IP address

The IP address is the ID, the identifier of each host – client or server device on the network. There are public and private IP addresses. You will have a private IP address on a closed private network that will let you use the network and connect to the other devices on that network. 

If you want to access the Internet, you will need a router that will use a public IP address provided by an Internet service provider. 

On the server-side, they also need a public IP address. This IP address should not change. It should be static, so clients can find it easily. 

But, when you are access sites, you are not typing their IP addresses but their domain names. How does this work?

DNS (Domain Name System)

Here comes the Domain Name System (DNS). It is an international system, a database of domain names and their IP addresses. It is the all-knowing service that answers DNS queries for domain names with their IP addresses.

DNS has a hierarchy structure with different levels, where each one knows the answer for the one below. The highest is the Root, which knows where the TLD servers are. On the other hand, they know where the domain names of their TLD (like .com, net, etc.).

This organization let you simply type domain names, and your computer will start a quest to find its IP address (A or AAAA DNS record) that starts from your computer’s DNS cache, then different recursive DNS servers who are searching for your answer, and finally authoritative DNS servers which provide this answer.

The begining of IPv4

The ARPAnet was where it all started. The US Department of Defense’s Advanced Research Projects Agency provided funding for the research network known as ARPAnet. It first became accessible in 1969 and permitted connections between 4 hosts. Each host had their own specific address for online communication. The network grew over time, and there were 213 hosts connected in 1981. ARPA significantly impacted universities and research facilities in the United States.

As soon as different types of networks appeared, it became necessary to link them into a single, inclusive, sizable network. The goal was to keep each network’s heterogeneity while enabling user communication across networks. In order to achieve this, Vint Cerf (NCP) and Robert Khan (DARPA) worked on a Transmission Control Program during the first half of the 1970s and published their first paper in 1974.

Transmission Control Protocol (TCP) and Internet Protocol (IP) were divided into separate versions in the third of its four implementations. The initial draft of TCP/IP v4 was released in 1978. By 1981, it had become the norm, and on January 1, 1983, often known as “flag day,” the ARPANET replaced NCP with TCP/IP (also recognized as “IPv4”).

Explore TCP monitoring service by ClouDNS

…And IPv4 today 

Later in 1993, a huge improvement to the IPv4 addresses allocation was introduced, which was called Classless Inter-Domain Routing (CIDR). Thanks to CIDR, now we have a suffix that is a number between 0 and 32 and shows how many bits represent the network. It looks like this 192.168.100.14/24. The CIDR allows a variable-length subnet that adapts to the current needs. 

By lowering the number of unused addresses that plagued the class system, CIDR delayed the expansion of routing tables and prolonged the lifespan of IPv4. This trick helped a lot with the IPv4 address exhaustion but is more like a temporary fix than a final solution.

IPv4 classification

We can distinguish five classes of IPv4 addresses: A, B, C, D, and E. Each of them has its own set of IP addresses. Let’s take a look at them.
Class A – The first bit, which is 0, spans the values 0.0.0.0 to 127.255.255.255. This class, which has 8 bits for the network and 24 bits for hosts, is designed for large networks.
Class B – It is intended for medium-sized to big networks. The first two bits, which are 10s, fall between 128.0.0.0 and 191.255.255.255. It also contains 16 bits for hosts and 16 bits for the network.
Class C – We use it for the small local area networks (LANs). The network in this class is indented using three octets. And the IP address has a range of 192.0.0.0 to 223.255.255.255, 24 network bits, and 8 host bits.
Class D – Only programs that require multicasting use it. That means we don’t use Class D for standard networking functions. Instead, it first three bits are set to “1,” and the fourth bit is used for “0”. Furthermore, 32-bit network addresses make up Class D addresses.
Class E – We use it for experimental or study-related reasons. This class of IP addresses covers the first octet values 240.0.0.0 to 255.255.255.255. An E class IP address’s first four bits are one in binary format.

Benefits of using Internet Protocol version 4

There are still a few benefits of using IPv4:

  • Excellent system support. Thanks to the years it already has, IPv4 is supported on all network devices.
  • Simple topology. It is easier to set up and manage an IPv4 network. 
  • IPv4 addresses are short. That makes them easier to write and even memorize.
  • Compatible with any device. IPv4’s fundamental purpose is to connect devices across the network. And certainly, millions of devices already support this protocol. That makes it the easiest compatible Internet Protocol for devices.

How can you monitor your IPv4 address?

An exposed component of the networking protocol is the IP address. Cyber attackers can change the IP (IPv4 or IPv6) addresses if they have access to the DNS settings. By doing this, they can either prohibit consumers from reaching a location or point them toward a dangerous website. But you can prevent this by using a DNS monitoring service. With it, you can check the IP address, and if something goes wrong, you will be notified, so that you may take appropriate action.

IPv4 vs. IPv6 – differences

There are several important differences between the old IPv4 and the new IPv6:

  • 32-bit addresses vs. 128-bit addresses, which provides a lot more addresses in the case of IPv6.
  • 4,294,967,296 IP addresses vs 340,282,366,920,938,463,463,374,607,431,768,211,456 IP addresses.
  • Fragmentation allows vs. no fragmentation. 
  • Address configuration manually or with DHCP vs. SLAAC or DHCP6. 
  • IPsec optional vs. part of the standard. IPv6 supports end-to-end encryption and can avoid man-in-the-middle attacks. 
  • NAT translation vs. no need for it in IPv6. 

You can read our in-depth IPv4 vs. IPv6 comparison for more information. 

How to find your IPv4 address?

You can find your external IPv4 address by typing “What’s my IP” in Google.com, and you will see it inside the rich snippet without the need to open any page. 

If you are using a Windows device, you can open the Cmd (Command Prompt) and type “ipconfig“. You will see the complete IP configuration. 

On Linux, open the Terminal and type “ip addr“. Then search for “inet”, and you will see it there. 

On macOS, click the Apple icon on your top left corner and then System Preferences. After that Network, find the network connection you are using and click on it. 

In addition, on Linux and macOS, you can check your IPv4 with the Dig command. Open the Terminal application and inside it, write the following command:

dig cloudns.net

Then in the answer section, you can find the IPv4 address of the domain name you want to check.

What is the future of IPv4?

We are in a time of transition from IPv4 to IPv6. It is not a fast migration, and many businesses decide to stick to the dual-stack model for now. It is harder to manage, but it is more reliable than IPv6-only. 

Due to the IPv4 address exhausting, eventually, we are going to an IPv6-only future, which will take a while. The leading countries in this are India, Belgium, Germany, Malaysia, and Greece. 

Currently, the global adoption rate is just north of 30%, but the percentage is rising.

How to find my website IP address?

Ensuring your website is accessible to all users requires knowing if it supports IPv4, IPv6, or both. Here’s a simplified guide to using the ClouDNS Free DNS Tool to find out:

  1. Open the Tool: Head to the ClouDNS Free DNS Tool website.
  2. Enter Domain Name: Type in your website’s domain, like cloudns.net, into the tool.
  3. Select Tool Type: Choose “DNS records” from the options.
  4. Choose DNS Resolver: Pick a DNS resolver and click “check” to start the query.
  5. Review Results: Scroll down to the results section. If you see:
  • An A record, your site supports IPv4.
  • An AAAA record, your site supports IPv6.
  • Both records indicate support for both IPv4 and IPv6.

This quick check ensures your website is up-to-date with internet protocols, enhancing accessibility and performance for a global audience.

Conclusion

The most popular protocol to date is IPv4. When IPv4 first came up, it appeared that there were enough addresses for all devices connected to the internet. However, the world’s population is expanding quickly, increasing the need for IP addresses.

Additionally, more networks have grown as a result of the ongoing technological advancements in nearly every sphere of society. Therefore, that implies an increase in IP addresses. This resulted in the developing of a new type of IP address, such as IPv6, which has more outstanding features and capacity, and that we expect one day to replace IPv4.

Nevertheless, as long as there are IPv4 addresses available, someone will require them. So, get unused IP addresses right away to help with the global IPv4 shortage.

The post What is IPv4? Everything you need to know  appeared first on ClouDNS Blog.

]]>
https://www.cloudns.net/blog/what-is-ipv4-everything-you-need-to-know/feed/ 0